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1 Formal power series

1.1 Definition, inverse limit, and multiplicative inverses

Definition 1.1. Let R be a ring. The ring of Formal power series, R [x], is the ring of
series of the form
ap + a1z + agz® + - -

with a; € R.

When we say “formal,” we mean that we don’t care about convergence. So these usually
do not define a function.

Example 1.1. Consider the formal power series in C [z]
1+ Uz +2l2” + 3l + -+
This only converges for x = 0.

R[] is the inverse limit of the rings R[z]/(2™), the polynomial rings truncated at
degree n. The homomorphism R[z]/(z") — R[z]/(z"') just removes the " term. We
also say that R [z] is the completion of R at the ideal (z). More generally, we can take
@R/I” for any ideal I.

Example 1.2. The map R — @R/I“ need not be injective. Let
R =C[z'/", all n > 0],
I= (/2,213 V4 ).
So R/I" = R/I = C for all n, which makes @R/I” =C.

We also consider R [x1,z2,...,2,], the ring of formal power series in n variables. This
is just the ring defined recursively as R [z1, ..., xn—1] [z5]-



Proposition 1.1. Let K [z] be a field. Suppose that f(x) = ap + a1z + - -+ with ag # 0.
Then f has an inverse.

Proof. Put ag = 1 for simplicity. Then f(z) = 1+ g(x), where g(x) = a1z + agz? + ---.
Then
f=1/(1+g9)=1-g+9g"—g"+--,

which makes sense because the coefficient of ™ is a finite sum for every n. O

Example 1.3. Let f = 1 4z + 2. The inverse is 1 — x + 2> — z%.

1.2 Ideals of R [z]

Proposition 1.2. The only ideals of K [z] are (0), (1), and (n) for n > 1.

Proof. Any element a,z" + a,4 12" = x"(an + aps1z + -+ ) = 2™u for a unit w. O
Corollary 1.1. K [z] is a PID, and a UFD.

What about K [x,y]? This is not a principal ideal domain because it has the nonprin-
cipal ideal (z,y). However, we have the following result.

Theorem 1.1. If R is Noetherian, so is R [z].

Proof. This is similar to the proof for polynomials. Let I be an ideal. Let I, be the
ideal of the coefficients of z™ in series with smallest term ™. Then I C I; C I C ---.
This stabilizes because R is Noetherian. Each of these is finitely generated, so I is finitely
generated. O

Corollary 1.2. If R is Noetherian, so is R[x1,...,x,].

Proof. Induct on n. O

1.3 Unique factorization

Recall that K[z1,...,x,] is a UFD. We want to prove the corresponding fact for formal
power series. But this is not as straightforward to prove.

A bad attempt would be to try to show that if R is a UFD, so is R [z]; this is not true
in general.!

If we try to copy the proof for R[z], we need to define the content of a formal power
series. But this need not exist.

Example 1.4. Let R=Z and f = 1+x/p+2?/p? +23/p3 + - -, where p is prime. Then
the content would have to be p~°° times something.

'Lang made this mistake in a previous version of the book. According to Professor Borcherds, there are
many papers that point out various errors in Lang’s book.



The following theorem lets us reduce formal power series proofs to polynomial proofs.
We treat the n = 2 case, but the proof for n variables is similar but with more bookkeeping.

Theorem 1.2 (Weierstrass preparation). Suppose f € K [x,y], were K is a field. Then
f = ug, where u is a unit, g is a polynomial in y with coefficients in K [x], and the leading

coefficient is a power of x.

Proof. Pick the monomial 2™y" so that a,, # 0 and if a5, = 0, then b < m, or b =m
and b < n; this is the same as saying that (m,n) is least in the lexicographic ordering on
the degrees of polynomials with nonzero coefficients.
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By multiplying by units, 1 + cz’y?, we can make the coefficients of every term 2™y* zero
for k > n; we can do this infinitely many times because the infinite product just defines a

power series.

We can then kill all the coefficients #™+1y* with & > 1. Similarly, kill off the other

coefficients of zfy* with k > m.

So f is a unit times 2™y" + > b; jx'y’ with i > m + 1 and j < m. Note that we have

to kill all the coefficients in this order; if you kill z*y? before you kill %37~ when you

kill 2°~*7=, you might make x’y7 nonzero.

O]



It turns out that the Weierstrass preparation theorem is what we needed.
Theorem 1.3. K [x1,...,2z,] is a UFD.

Proof. We will treat the case of n = 2, R[x,y]. We first show that every element has a
factorization into irreducibles. The proof we gave for R[z] works for any Noetherian ring,
and R [x] is Noetherian.

To prove uniqueness, the key step is to show that irreducible elements are prime. Ir-
reducible means that g # gh with g, h not units, and prime means that if f divides gh,
then f divides g or h. This follows from the Weierstrass preparation theorem. Suppose
that f divides gh; we can assume f, g, h are polynomials in y with coefficients in K [z].
By induction, K [z] is a UFD, so K [z] [y] is a UFD since it is a polynomial ring over a
UFD. So f divides g or h in K [z] [y] and hence in K [z] [y]. O

Example 1.5. Let f(x,y) = y* — 22 — 23. This is irreducible as a polynomial in K[z, y],

but it is not irreducible as a power series in K [z, y].

y' =2’ =’ = (y+aV1+ )y —2v1+a),

where /1 + x is the formal power series
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Geometrically, the curve y?> = 22 — 23 only has 1 component. Near 0, the curve

looks reducible, however, because it looks like two intersecting curves, y = z+/1 + = and
y = —2v/1+ . So this polynomial is reducible in K [z,y] iff the curve y? — 22 = 23 =0
has two branches near x = y = 0 (the point where the ideal (x,y) vanishes).

1.4 Hensel’s lemma

Lemma 1.1 (Hensel). Suppose f(z,y) € K [z,y], and suppose the smallest nonzero coeffi-
cients are of degree d and form a polynomial f4(x,y). Suppose that f4(x,y) = g(x,y)h(z,y)
with g,h coprime. Then f(z,y) = G(x,y)H (z,y), where g and h are the smallest degree
terms of G and H, respectively.

We will not prove this. Instead, here are some examples.
Example 1.6. Let f(z) = y?> — 22 — 3. Then d — 2 and f» = y?> — 2. So
fy? —a? = (y —2)(y +x),

which lifts to

-t -t =(y—aVi+a)ly—avVita)=(y—z+-)y+z+---)



Example 1.7. Let f(z) = y?> —2%. Then d = 2 and f; = y*> = y-y. However, y? — 23 does
not factorize! This is because 23 has no square root as a formal power series. Geometrically,
y? — 23 = 0 looks like a cusp, so we don’t get two different curves around 0.

Here is an analogue of Hensel’s lemma in number theory.

Lemma 1.2 (Hensel (number theory version)). Suppose f(x) = (x —a)g(x), and f(x) =0
around p, where f € Z[z]. If f'(x) # 0 (mod p) has a root in Z;, (f(z) =0 mod p" for
alln>1).

Example 1.8. Let f(z) = 22 = 7 and p = 3. Then f(1) = 12 -7 = 0 (mod 3), and
/(1) =220 (mod 3). So 22 — 6 =0 (mod p)" has a root for all n >. We get

2 —7=(x—V7)(x+V7)

Example 1.9. Let f(z) = 2% — 7 and p=2. f(1) =0 (mod 2), and 2% — 7 has no roots
(mod 2)% =8. And f/(1) =2 =0 (mod 2).
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