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1 Formal power series

1.1 Definition, inverse limit, and multiplicative inverses

Definition 1.1. Let R be a ring. The ring of Formal power series, R JxK, is the ring of
series of the form

a0 + a1x + a2x
2 + · · ·

with ai ∈ R.

When we say “formal,” we mean that we don’t care about convergence. So these usually
do not define a function.

Example 1.1. Consider the formal power series in C JxK

1 + 1!x + 2!x2 + 3!x3 + · · · .

This only converges for x = 0.

R JxK is the inverse limit of the rings R[x]/(xn), the polynomial rings truncated at
degree n. The homomorphism R[x]/(xn) → R[x]/(xn−1) just removes the xn term. We
also say that R JxK is the completion of R at the ideal (x). More generally, we can take
lim←−R/In for any ideal I.

Example 1.2. The map R→ lim←−R/In need not be injective. Let

R = C[x1/n, all n > 0],

I = (x1/2, x1/3, x1/4, . . . ).

So R/In = R/I = C for all n, which makes lim←−R/In = C.

We also consider R Jx1, x2, . . . , xnK, the ring of formal power series in n variables. This
is just the ring defined recursively as R Jx1, . . . , xn−1K JxnK.
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Proposition 1.1. Let K JxK be a field. Suppose that f(x) = a0 + a1x + · · · with a0 6= 0.
Then f has an inverse.

Proof. Put a0 = 1 for simplicity. Then f(x) = 1 + g(x), where g(x) = a1x + a2x
2 + · · · .

Then
1/f = 1/(1 + g) = 1− g + g2 − g3 + · · · ,

which makes sense because the coefficient of xn is a finite sum for every n.

Example 1.3. Let f = 1 + x + x2. The inverse is 1− x + x3 − x4.

1.2 Ideals of R JxK

Proposition 1.2. The only ideals of K JxK are (0), (1), and (n) for n ≥ 1.

Proof. Any element anx
n + an+1x

n+1 = xn(an + an+1x + · · · ) = xnu for a unit u.

Corollary 1.1. K JxK is a PID, and a UFD.

What about K Jx, yK? This is not a principal ideal domain because it has the nonprin-
cipal ideal (x, y). However, we have the following result.

Theorem 1.1. If R is Noetherian, so is R JxK.

Proof. This is similar to the proof for polynomials. Let I be an ideal. Let In be the
ideal of the coefficients of xn in series with smallest term xn. Then I0 ⊆ I1 ⊆ I2 ⊆ · · · .
This stabilizes because R is Noetherian. Each of these is finitely generated, so I is finitely
generated.

Corollary 1.2. If R is Noetherian, so is R Jx1, . . . , xnK.

Proof. Induct on n.

1.3 Unique factorization

Recall that K[x1, . . . , xn] is a UFD. We want to prove the corresponding fact for formal
power series. But this is not as straightforward to prove.

A bad attempt would be to try to show that if R is a UFD, so is R [x]; this is not true
in general.1

If we try to copy the proof for R[x], we need to define the content of a formal power
series. But this need not exist.

Example 1.4. Let R = Z and f = 1 + x/p+ x2/p2 + x3/p3 + · · · , where p is prime. Then
the content would have to be p−∞ times something.

1Lang made this mistake in a previous version of the book. According to Professor Borcherds, there are
many papers that point out various errors in Lang’s book.
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The following theorem lets us reduce formal power series proofs to polynomial proofs.
We treat the n = 2 case, but the proof for n variables is similar but with more bookkeeping.

Theorem 1.2 (Weierstrass preparation). Suppose f ∈ K Jx, yK, were K is a field. Then
f = ug, where u is a unit, g is a polynomial in y with coefficients in K JxK, and the leading
coefficient is a power of x.

Proof. Pick the monomial xmyn so that am,n 6= 0 and if ab,c = 0, then b < m, or b = m
and b < n; this is the same as saying that (m,n) is least in the lexicographic ordering on
the degrees of polynomials with nonzero coefficients.

...
...

...
...

0 a1,0 a2,0 a3,0 · · ·
0 a1,3 a2,3 a3,3 · · ·
0 a1,2 a2,2 a3,2 · · ·
0 0 a2,1 a3,1 · · ·
0 0 a2,0 a3,0 · · ·

By multiplying by units, 1 + cxiyj , we can make the coefficients of every term xmyk zero
for k > n; we can do this infinitely many times because the infinite product just defines a
power series.

...
...

...
...

0 0 ∗ ∗ · · ·
0 0 ∗ ∗ · · ·
0 a1,2 ∗ ∗ · · ·
0 0 ∗ ∗ · · ·
0 0 ∗ ∗ · · ·

We can then kill all the coefficients xm+1yk with k ≥ 1. Similarly, kill off the other
coefficients of x`yk with k ≥ m.

...
...

...
...

0 0 0 0 · · ·
0 0 0 0 · · ·
0 a1,2 0 0 · · ·
0 0 ∗ ∗ · · ·
0 0 ∗ ∗ · · ·

So f is a unit times xmyn +
∑

bi,jx
iyj with i ≥ m + 1 and j ≤ m. Note that we have

to kill all the coefficients in this order; if you kill xiyj before you kill xi−kyj−`, when you
kill xi−kyj−`, you might make xiyj nonzero.
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It turns out that the Weierstrass preparation theorem is what we needed.

Theorem 1.3. K Jx1, . . . , xnK is a UFD.

Proof. We will treat the case of n = 2, R Jx, yK. We first show that every element has a
factorization into irreducibles. The proof we gave for R[x] works for any Noetherian ring,
and R JxK is Noetherian.

To prove uniqueness, the key step is to show that irreducible elements are prime. Ir-
reducible means that g 6= gh with g, h not units, and prime means that if f divides gh,
then f divides g or h. This follows from the Weierstrass preparation theorem. Suppose
that f divides gh; we can assume f, g, h are polynomials in y with coefficients in K JxK.
By induction, K JxK is a UFD, so K JxK [y] is a UFD since it is a polynomial ring over a
UFD. So f divides g or h in K JxK [y] and hence in K JxK JyK.

Example 1.5. Let f(x, y) = y2 − x2 − x3. This is irreducible as a polynomial in K[x, y],
but it is not irreducible as a power series in K Jx, yK.

y2 − x2 − x3 = (y + x
√

1 + x)(y − x
√

1 + x),

where
√

1 + x is the formal power series

√
1 + x = 1 +

1

2
x +

1
2 ·
−1
2

2!
x2 + · · · .

Geometrically, the curve y2 = x2 − x3 only has 1 component. Near 0, the curve
looks reducible, however, because it looks like two intersecting curves, y = x

√
1 + x and

y = −x
√

1 + x. So this polynomial is reducible in K Jx, yK iff the curve y2 − x2 = x3 = 0
has two branches near x = y = 0 (the point where the ideal (x, y) vanishes).

1.4 Hensel’s lemma

Lemma 1.1 (Hensel). Suppose f(x, y) ∈ K Jx, yK, and suppose the smallest nonzero coeffi-
cients are of degree d and form a polynomial fd(x, y). Suppose that fd(x, y) = g(x, y)h(x, y)
with g, h coprime. Then f(x, y) = G(x, y)H(x, y), where g and h are the smallest degree
terms of G and H, respectively.

We will not prove this. Instead, here are some examples.

Example 1.6. Let f(x) = y2 − x2 − x3. Then d− 2 and f2 = y2 − x2. So

fy2 − x2 = (y − x)(y + x),

which lifts to

y2 − x2 − x3 = (y − x
√

1 + x)(y − x
√

1 + x) = (y − x + · · · )(y + x + · · · ).
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Example 1.7. Let f(x) = y2−x3. Then d = 2 and fd = y2 = y · y. However, y2−x3 does
not factorize! This is because x3 has no square root as a formal power series. Geometrically,
y2 − x3 = 0 looks like a cusp, so we don’t get two different curves around 0.

Here is an analogue of Hensel’s lemma in number theory.

Lemma 1.2 (Hensel (number theory version)). Suppose f(x) = (x−a)g(x), and f(x) = 0
around p, where f ∈ Z[x]. If f ′(x) 6= 0 (mod p) has a root in Zp (f(x) ≡ 0 mod pn for
all n ≥ 1).

Example 1.8. Let f(x) = x2 = 7 and p = 3. Then f(1) = 12 − 7 ≡ 0 (mod 3), and
f ′(1) = 2 6≡ 0 (mod 3). So x2 − 6 ≡ 0 (mod p)n has a root for all n ≥. We get

x2 − 7 = (x−
√

7)(x +
√

7)

Example 1.9. Let f(x) = x2 − 7 and p = 2. f(1) ≡ 0 (mod 2), and x2 − 7 has no roots
(mod 2)3 = 8. And f ′(1) = 2 ≡ 0 (mod 2).
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